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assessing sensitivity to unmeasured
confounding
Vincent Dorie,a Masataka Harada,b Nicole Bohme Carnegiec

and Jennifer Hilla*†

When estimating causal effects, unmeasured confounding and model misspecification are both potential sources
of bias. We propose a method to simultaneously address both issues in the form of a semi-parametric sensitiv-
ity analysis. In particular, our approach incorporates Bayesian Additive Regression Trees into a two-parameter
sensitivity analysis strategy that assesses sensitivity of posterior distributions of treatment effects to choices of
sensitivity parameters. This results in an easily interpretable framework for testing for the impact of an unmea-
sured confounder that also limits the number of modeling assumptions. We evaluate our approach in a large-scale
simulation setting and with high blood pressure data taken from the Third National Health and Nutrition Exam-
ination Survey. The model is implemented as open-source software, integrated into the treatSens package for
the R statistical programming language. © 2016 The Authors. Statistics in Medicine Published by John Wiley &
Sons Ltd.
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1. Introduction

Causal inference in the absence of a randomized experiment or strong quasi-experimental design requires
appropriately conditioning on all pre-treatment variables that predict both treatment and outcome, also
known as confounding covariates. This requirement, formalized as the ignorability assumption in the
statistics literature, is often not satisfied, which leaves inference vulnerable to bias. Researchers interested
in causal questions that cannot be addressed with randomized experiments are thus left in the unenviable
position of either avoiding causal language or arguing for the satisfaction of a strong and untestable
assumption. The sensitivity of a study to this ignorability assumption can be analyzed by positing the
existence of an unmeasured confounder and specifying its form in the inferential model. If the treatment
effect estimate under the augmented model differs substantially from the original under plausible levels
of confounding, then the study can be deemed sensitive to violations of ignorability.

In addition to structural assumptions required for the causal estimand to be identifiable (i.e., ignor-
ability), bias can also be introduced when making assumptions about the form of the causal pathway.
In practice, these assumptions often take the shape of parametric models, in which the exact relation-
ships among response, treatment, and covariates are made explicit. If this parametric form is incorrect,
model misspecification biases may be introduced. However, these assumptions and attendant biases can
be mitigated by employing nonparametric models. Flexible nonparametric methods can represent func-
tional forms of arbitrary complexity so that, provided that ignorability holds, the true relationship of the
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response variable to the treatment variable and covariates can be recovered. Causal inference can be con-
ducted by using a fitted nonparametric model to make predictions for the counterfactuals, which are in
turn used to compute estimates of treatment effects.

In this paper, we present a simulation-based approach to test the sensitivity of a study to unmea-
sured confounding that utilizes nonparametric methods for modeling the response variable. We explicitly
include the unmeasured confounder in both the response and treatment models as an additive term with
coefficients that serve as sensitivity parameters. Because the unmeasured confounders behave as latent
variables, completing the model with weakly informative priors allows us to draw samples from the
posterior distribution of the treatment effect using Markov chain Monte Carlo. For any treatment effect
estimate, the values of the sensitivity parameters are graphically compared with the marginal effects‡ of
observed covariates, so that the researcher can have some benchmark for deciding problematic levels of
confounding are plausible. The nonparametric method we use to model the response surface is called
Bayesian Additive Regression Trees (BART), which has been shown to perform well in a wide variety
of settings without requiring the adjustment of tuning parameters.

2. Background

There has long been dissatisfaction with relying on observational studies to answer causal questions.
Many approaches have been proposed to try to reduce the dependence on standard ignorability assump-
tions in non-experimental work by focusing on quasi-experimental designs and natural experiments [1,2].
However, it is not always possible to find data that meet these criteria and can also address the research
question of primary interest. Moreover, these approaches come with their own sets of assumptions, which
are not always more plausible than the standard ignorability assumption in a typical observational study.
For instance, traditional formulations of the instrumental variables approach require satisfying the fol-
lowing assumptions: (i) ignorability of the instrument, (ii) the exclusion restriction (colloquially, the
instrument can only affect the outcome through its effect on the treatment), and (iii) the monotonicity
assumption. It is relatively rare to find compelling examples of such instruments in practice, and when
the instrument is weak (in the sense that there is a low percentage of observational units whose behavior
is influenced by the instrument), violations of these assumptions can lead to extreme bias [3]. Finally,
quasi-experimental and natural experiment approaches often yield inferences about only a small subset
of the population of interest, which can be unsatisfying [4].

Another way to address concern regarding violations of the ignorability assumption is to directly assess
the sensitivity of a given study to violations of the ignorability assumption. Many strategies have been
proposed that explore the impact on causal estimates of the inclusion of an unmeasured confounder that,
along with the observed covariates, would serve to satisfy the ignorability assumption [e.g., [5–10]]; this
is often referred to as sensitivity analysis (SA).

While unmeasured confounding represents one source of potential bias, an over-reliance on parametric
assumptions can introduce another. In practice, it can be difficult to diagnose and fix deviations from
linearity and additivity required by the most common parametric models in high-dimensional space (that
is, when there are many covariates). Furthermore, the iterative process of model diagnosis and model
tweaking (where at each stage the researcher can see the new treatment effect estimate) can inadvertently
lead to a tendency to fit models that yield treatment effects that conform to a priori beliefs about the sign
and magnitude of these effects.

Figure 1 illustrates the importance of including nonlinear effects and interactions in the context of
our motivating example, an investigation of the effect of medication on blood pressure. Using data from
the Third National Health and Nutrition Examination Survey [NHANES III, [11]], this figure displays
a locally weighted scatterplot smoothing (LOESS) fit to the expected value of blood pressure condi-
tional on age, separately for males and females. The shaded bands depict pointwise confidence intervals
for these expectations. These plots reveal a strongly nonlinear relationship between blood pressure and
age, and moreover, these relationships differ between the sexes. Finding and appropriately modeling all
such nonlinearities and interactions can be challenging when many covariates are required to satisfy
ignorability.

‡By ‘marginal effect’, we do not mean to imply a casual relationship - instead only that of the expected difference in response
between two individuals whose covariates differ only in a single predictor, one of which is one half of a standard deviation
above its mean while the other is one half of a standard deviation below.
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Figure 1. LOESS curves of average systolic (left) and dystolic (right) blood pressure for all individuals in the
Third National Health and Nutrition Examination Survey dataset, plotted against age and separated by sex. The

shading shows pointwise 95% confidence intervals for the mean.

2.1. Existing approaches to sensitivity analysis

Modern approaches to SA can be categorized according to the number and type of their sensitivity param-
eters. Sensitivity parameters are the values that control how the unmeasured confounder enters into the
model and must be interpretable by the researcher to be useful. An important example is Rosenbaum’s
Γ, which bounds the odds that one member of a matched pair receives the treatment relative to the other
[12]. Working with a single parameter, so-called primal methods, specifies the relationship between the
unobserved confounder and the treatment assignment mechanism but assume that the confounder and
response are essentially collinear [e.g., [13]]. Conversely, ‘dual’ methods assume the inverse set of rela-
tionships [e.g., [9]]. As we are primarily motivated by relaxing assumptions, we specify both relationships
and consequently define two sensitivity parameters. Methods of this type are sometimes classified as
‘simultaneous’ [e.g., [14, 15]]; however, we will use the term ‘two parameter’.

Many one-parameter (primal and dual) SA approaches have the advantage of being nonparametric
or semi-parametric. Of these methods, the majority rely on randomization tests, such as McNemar’s
test for binary treatment and response [13] or the Wilcoxon signed-rank test for a continuous response
[13, 16]. An overview of such approaches to SA can be found in Chapter 4 of [10]. Unfortunately, these
SA procedures have been shown to be sensitive to the choice of test statistic [17]. In addition, many of
these methods also require matched samples, a complicating factor that we will discuss later. Finally,
one-parameter SA approaches have the disadvantages of using sensitivity parameters that are not always
easily interpretable and of reliance on overly conservative assumptions, such as the assumption in primal
methods that the unobserved confounder is nearly perfectly correlated with the outcome variable.

Two-parameter SA approaches, on the other hand, tend to have more interpretable parameters
(expressed as partial correlations or regression coefficients), do not require matching, and do not
require assumptions about strong/perfect correlations between the unobserved confounders and either
the treatment or response. The trade-off, however, is that they tend to rely more strongly on
parametric assumptions.

For example, in an approach proposed by [14], the response surface (expected value of the response as a
function of both the confounding covariates and treatment variable) and treatment assignment mechanism
(expected value of the treatment assignment as a function of the confounding covariates) are modeled
using linear regression and logit models, respectively. An unmeasured confounder is assumed to exist
and is added to each model, parameterized by partial correlations. The model is then fit using marginal
maximum likelihood. Reference [18] relies on a similar model but uses a computationally intensive
simulation-based approach to explore the treatment effect estimates that manifest across a range of sen-
sitivity parameters. Reference [19] also uses a simulation approach but reparameterizes Imbens’s model
so that the sensitivity parameters can be expressed as regression coefficients, with the aim of building an
easily interpretable framework that could be adapted to more complicated models. Moreover, the authors
extend the framework to accommodate estimation of a wider range of estimands, such as the effect of the
treatment on the treated and the effect of the treatment on the controls.

We know of two other semiparametric two-parameter sensitivity nalyses, Rosenbaum and Silber [20]
and Ichino et al. [21]. The first - an extension of Rosenbaum’s Γ - is limited by the fact that it discards
information about the magnitude of the treatment effect by dichotomizing the difference in outcomes
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between groups as simply positive or negative. The second uses propensity score matching techniques,
which can be problematic for reasons which we discuss below.

2.2. Approaches to nonparametric or semi-parametric causal inference

Many options exist to reduce the reliance of causal inferences on parametric assumptions. For instance,
conditional on the ignorability assumption, a popular conceptual approach is to find appropriate com-
parisons between observations through matching or weighting [[22, 23], respectively]. However, these
approaches require their own restrictions, which may lead to further biases if unmet. For example, match-
ing depends on assumptions about when sufficient balance and overlap exist, and it has been shown that
the same balance definition can sometimes lead to a wide variety of potential treatment effect estimates
depending on the matching procedure used [24]. On the other hand, weighting using propensity scores
either relies heavily on the estimate of the propensity score, requiring its own modeling assumptions and
introducing its own biases [25] or, like matching, relies instead on balance metrics to ascertain that an
appropriate pseudo-comparison group has been created. The motivation behind these methods is that if
well-balanced comparison group can be created, then inference should be fairly robust to misspecification
of the model used to estimate treatment effects (the response surface).

As an alternative to this line of reasoning, nonparametric regression methods attempt to model the
totality of the response surface, from which counterfactuals can be imputed and causal estimates calcu-
lated directly. The theory for this dates (at least) to [26], but the introduction of flexible methods to handle
arbitrary complexity – heavily influenced by machine learning – is a relatively new development. These
approaches have been shown to be preferable to many popular matching and weighting approaches in
several scenarios [27–29].

A related concern with parametric assumptions is the growing awareness that not only is functional
form important, but also the structural relationships between covariates can have an impact. For exam-
ple, there is an ongoing debate about the dangers of including instrumental variables in response models,
which may serve to amplify the bias because of an unobserved confounder [30, 31]. In large observa-
tional studies, the correct role for any particular variable is not always apparent. With this in mind, some
researchers are opting to keep parametric models but be more sophisticated in their application by analyz-
ing covariates before incorporating them. For example, [32] shows how the inclusion of different kinds
of covariates in a propensity score model subsequently influences the treatment effect estimate by vary-
ing their relationships to the treatment and response variables. Continuing in this vein, [33] develop a
complex algorithm to determine which predictors to use in high-dimensional propensity score model,
which is then fit using ordinary logistic regression. On the topic of variable selection, there is conflicting
advice with some arguing that the strongest estimate of the propensity score uses all available covariates
[30], while others point out that aggressively balancing on observed covariates may produce an imbal-
ance on any that are unobserved [34]. Although nonparametric methods may help address these concerns,
variable selection techniques for causal inference are beyond the scope of this paper.

2.3. Paper overview

The goal in this paper is to develop a sensitivity analysis framework that is both easily interpretable but
also widely applicable. These two, often competing, considerations have driven our choice of methodol-
ogy. Thus, we focus on a two-parameter sensitivity analysis approach similar to [19] and use sensitivity
parameters that take the form of regression coefficients (which the majority of researchers are comfortable
interpreting). We embed this model within a Bayesian framework, which is fit via a Markov chain Monte
Carlo sampler. This allows us to replace model components with ones that are applicable to different
kinds of data or are more broad in scope in a way that may not always be tractable using marginal maxi-
mum likelihood. In particular for this paper, it allows us to swap in a Bayesian nonparametric algorithm
to flexibly fit the response surface portion of the model. Taken together with a parametric assignment
mechanism model, this produces a semi-parametric sensitivity analysis. An open-source implementation
of the software has been added to the publicly available treatSens package [35] for the R statistical pro-
gramming language [36] and is available on the Comprehensive R Archive Network. We will refer to
the original algorithm henceforth as linear treatSens to distinguish it from the semi-parametric treatSens
developed in this paper.

This paper proceeds by first reviewing causal inference notation, defining relevant estimands and
discussing the requisite structural and parametric assumptions. We then describe the two-parameter
sensitivity analysis framework defined in [19]. Subsequently, we extend that approach to allow for non-
parametric specifications of the response surface and propose a specific estimation strategy involving the
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BART [37] algorithm. To assess the performance of our approach, we conduct a large-scale simulation
study. Finally, we illustrate its use in an applied example that estimates the effect of anti-hypertensive
drugs on blood pressure using data from NHANES III.

3. Causal inference notation and assumptions

We follow convention in the statistics literature [38] by defining an individual-level causal effect of a
binary treatment, Z, as a comparison across potential outcomes such as Yi(1) − Yi(0), where Yi(0) is the
outcome that would manifest for person i if Zi = 0 and Yi(1) is the outcome that would manifest for
person i if Zi = 1.

In this notation, treatment effects are simply averages of these individual-level causal effects across
subpopulations of interest. For example, the average treatment effect (ATE) is the expected valueE[Y(1)−
Y(0)] = E[Y(1)] − E[Y(0)], or the difference between the average response when everyone is treated
and the average response when no one is treated (the subscript ‘i’ has been dropped for simplicity). Two
conditional average treatment effects that are often of interest are the average treatment effect on the
treated (ATT) and the average treatment effect on the controls (ATC), given by E[Y(1)−Y(0) ∣ Z = 1] and
E[Y(1) − Y(0) ∣ Z = 0], respectively. Note that for the ATT (ATC), the difference in potential outcomes
is averaged only over those units observed to be in the treatment (control) group.

Because we cannot observe Y(1) for observations assigned to control and we cannot observe Y(0)
for observations assigned to treatment, these treatment effects are not identified without further assump-
tions. The most common assumption invoked is the so-called ignorability assumption [38], also known in
various disciplines as ‘selection on observables,’‘all confounders measured,’ ‘exchangeability,’the ‘con-
ditional independence assumption,’ and ‘no hidden bias’ [[10,39–41]]. A special case of the ignorability
assumption occurs in a completely randomized experiment in which Y(0),Y(1) ⟂ Z. One implication
is that E[Y(a) ∣ Z = a] = E[Y(a)], allowing identification of the previous estimands solely from
observed outcomes.

In the absence of a randomized experiment, identification can be achieved by appropriately condition-
ing on the vector of confounding covariates, X, that satisfies the more general form of the ignorability
assumption, Y(0),Y(1) ⟂ Z ∣ X. This assumption allows us to identify average treatment effects such as
the ones described earlier because, while E[Y(a) ∣ Z = a] ≠ E[Y(a)], E[Y(a) ∣ Z = a,X] = E[Y(a) ∣ X].

In this situation, the ATE is found by averaging the conditional expectation E[Y(1) − Y(0) ∣ X] =
E[Y(1) ∣ Z = 1,X] − E[Y(0) ∣ Z = 0,X] over the distribution of X. To obtain the ATT (or ATC), this
averaging is performed over the distribution of X for the treatment (or control) group. Much of the focus
of the causal inference literature in the past few decades has been on appropriate ways to estimate these
conditional expectations without making strong parametric assumptions, as discussed in more detail in
Section 2. This paper is similarly motivated.

4. Sensitivity analysis frameworks and assumptions

To test the sensitivity of a result to a potential unmeasured confounder, it is standard to hypothesize that
such a confounder exists and determine the level of confounding required to drive the naïve treatment
effect (the treatment effect estimated in the absence of this confounder) to zero or nonsignificance. In a
classic early example [5], the authors quantify how implausibly strong the level of confounding created
by a latent genetic factor would need to be to fully explain the association between smoking and lung
cancer.

4.1. Standard formulation of sensitivity analysis

Formally, our SA proceeds by supposing that ignorability is satisfied with the addition of a confounder,
U. That is, we assume that Y(0),Y(1) ⟂ Z ∣ X,U. The complication is that we do not, of course, observe
U and it could take any of an infinite variety of forms. However, if we specify a joint model for our
observed data and U, then we can calculate how conditioning on U would change the estimated treatment
effect. By comparing various manifestations of U with the observed covariates in our dataset, we can also
evaluate the plausibility that such an omitted confounder exists.

We use the parametric two-sensitivity-parameter model presented in [19] as a foundation. Specifically,
the original model for binary treatment variables underlying linear treatSens is as follows:
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Y ∣ X,U,Z ∼ N
(

X𝛽y + 𝜁 yU + 𝜏Z, 𝜎2
y

)
, (1)

Z ∣ X,U ∼ Bernoulli (Φ(X𝛽z + 𝜁 zU)) ,
U ∼ Bernoulli(𝜋u),

(2)

where Φ denotes the standard normal cumulative distribution function or probit link. The unmeasured
confounder U is assumed to be independent of the measured confounders X. This can be conceptualized
by considering U to represent the portion of the unobserved covariate not explained by observed covari-
ates. Conveniently, the sensitivity parameters, 𝜁 y and 𝜁 z, are easily interpretable as regression coefficients
from a linear regression and probit regression, respectively.

The unmeasured confounder U is assumed to be independent of the measured confounders X. This
can be justified by considering U to represent the portion of the unobserved covariate not explained by
observed covariates. The fact that U is specified as binary represents a limitation of the current model
although one could conceptualize a latent continuous unobserved confounder with a pertinent cutoff that
would map to this binary variable. Specifying U as continuous substantially increases the mathematical
complexity of our fitting algorithm, however, and thus will be reserved as a topic for future work.

The algorithm proceeds by determining ranges of sensitivity parameters, 𝜁 y and 𝜁 z, that inform the
treatment effect estimate. This is carried out by following the line 𝜁 y = 𝜁 z through the point of no-
significance and out until the treatment effect is approximately 0. A box that encapsulates this point
will contain most, if not all, of the pairs of sensitivity parameter values where the substantive nature
of the estimate would be changed. The algorithm then divides these ranges into a grid and, for each
unique parameter combination, simulates values of U from its conditional distribution given the data.
The estimate of the treatment effect conditional on that manifestation of U is then computed. The results
can then be displayed using a contour plot to reveal the combinations of sensitivity parameters that yield
various treatment effect estimates. The parameter values can further be compared with the magnitude
of associations of observed confounders in the model (with non-dichotomous confounders standardized
to have mean 0 and variance 1), as all terms are regression coefficients. This approach provides the
foundation for an easily interpretable, two-parameter SA.

5. Extensions to the original model

We extend the formulation in [19] in two ways. First, we allow for a nonparametric fit of the response
surface. Second, we create a fully Bayesian version of the model. These extensions will be motivated and
discussed in more detail in this section.

5.1. Extension 1: Nonparametric Fit

Unbiased estimation of causal estimands requires not only that we have observed all the relevant con-
founding covariates (the ignorability assumption) but also further that we can accurately recover the
relevant conditional expectations. However, the strict linearity and additivity assumptions implicit in the
original formulation of the model are not always believable. Fortunately, parametric assumptions of this
sort are easier to relax than structural assumptions such as ignorability.

We capitalize on recent approaches to causal inference that directly and flexibly fit the response surface
and modify Equation (1) such that

Y ∣ X,U, Z ∼ N
(

f (X,Z) + 𝜁 yU, 𝜎2
y

)
,

where f (⋅) is allowed to be an arbitrary function. Although U enters the equation linearly and additively,
the linear restriction is unimportant because U has been specified as a binary variable. In theory, U
could enter non-additively; however, short of a very precise model for this non-additivity, doing so would
require additional sensitivity parameters, which would in turn complicate interpretability.

We propose to fit this part of the model using an algorithm called BART [37] that has been demonstrated
to perform well in causal inference settings [24, 27, 28, 42]. The exact method by which f is estimated
is of less importance than that it can flexibly capture dependencies among covariates and between the
covariates and treatment variable. While nonparametric methods have been widely applied to difficult
regression problems – including such techniques as as generalized additive models [43], Gaussian pro-
cesses [44], or kernel regression techniques [45] – complications arise in adapting these methods to causal
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inference through the introduction of the treatment variable. For instance, in generalized additive models
and Gaussian processes, one must explicitly define which terms interact with Z by choosing the additive
terms or covariance function, respectively. In light of these difficulties, few nonparametric response sur-
face models have been proposed for causal inference problems; one exception is [29]. While these issues
can be addressed by direct involvement of the analyst, we prefer to utilize methods, which require the
minimum of expert intervention and have a proven track record.

Not only does BART perform well at its default settings for a wide variety of causal inference problems,
but it also scales well without requiring approximation techniques, has a public software implementation
[46,47], and is a proper Bayesian model that can be embedded in our framework through the introduction
of a posterior sampler. We discuss the specifics of the new joint BART and SA algorithm in the following
section. The resulting semi-parametric treatSens algorithm is publicly available in the treatSens [35]
package for the R statistical programming language [36].

5.2. Extension 2: Fully Bayesian model

To fully account for our uncertainty about our parameters, we create a Bayesian version of the model.
Specifically, we replace the response model of linear treatSens, that is, Equation (1), with

Y ∣ U, 𝜇xz, 𝜎
2
y ∼ N

(
𝜇xz + 𝜁 yU, 𝜎2

y

)
,

𝜇xz, 𝜎
2
y ∼ BART(X,Z).

Here, BART(X,Z) signifies that Metropolis jumps for these parameters are handled externally by BART
and 𝜇xz is the prediction at point (X,Z). A brief overview can be found in the next section; for full details,
see [46]. Further, we impose a prior on the coefficients in the model for Z, 𝛽z in Equation (2); we pro-
vide options for either a flat, normal, or Student-t distribution. This yields a fully Bayesian formulation,
which we fit by writing a posterior sampler. To provide a point of comparison with previous methods, we
also implement a variant that uses maximization for the parameters in the assignment mechanism. This
algorithm falls in the class of stochastic expectation–maximization (S-EM) procedures [48]. In this case,
we omit the prior for 𝛽z.

5.3. Bayesian Additive Regression Tree model

Bayesian Additive Regression Trees is a sum-of-trees model that adds together the predictions of a num-
ber of regression trees suitably regularized by prior distributions. Regression trees constructed by BART
partition the space of covariates by using sequential binary decision rules, each one of which splits using
a single covariate. For example, when predicting blood pressure, the root of the tree might divide the
observations by sex. The male subjects might be further separated into those greater than and less than
or equal to 45 years old, while the female subjects sorted similarly using a different variable. The pos-
sible splits are derived from observed data according to a pre-specified rule, such as at percentiles or
percentages of the distance between the smallest and largest value of a covariate.

The leaf nodes at the end of the tree contain distinct subsets of the observations defined by the covari-
ates, and the fit for that leaf is an average of the outcomes for that leaf shrunk according to a prior
distribution so as to avoid overfitting. BART is ‘additive’ as the predictions from many small trees (‘weak
learners’) are summed together.

The likelihood specified by BART uses the predictions from these trees as a mean function. Obser-
vations are assumed to be independently and normally distributed about this mean and share a common
variance. The model is made Bayesian by the addition of priors over the model components, namely, the
space of trees, the variance term, and the mean parameters that are used in every leaf node.

We can write down a BART model succinctly as follows. Let T be the set of all non-empty binary
decision trees that partition the values of X1,… ,Xn according to the method described earlier. For each
of T1,… , TK ∈ T trees, let Ajk be the 1,… , Jk sets of the partition corresponding to the leaf nodes of tree
k. The leaf-node parameters of tree Tk are collected in the set Mk, whose members we denote 𝜇jk and are
indexed similarly. Then

Yi ∣ T ,M, 𝜎2,Xi
ind∼ N

(
K∑

k=1

Jk∑
j=1

𝜇jkI{Xi∈Ajk}, 𝜎
2

)
, for i = 1,… , n.

This is completed by priors p(T), p(𝜇), and p(𝜎). IA is the indicator function of the set A.
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5.4. Choice of model for assignment mechanism

While BART has superior properties for fitting continuous responses, its performance for binary response
data can strongly depend on the choice of hyperparameters. In short, the amount of prior-assumed vari-
ability in the underlying and unconstrained function can cause the algorithm to overfit when the covariates
are weakly correlated with the reponse and underfit in the converse case. A more detailed discussion is
available in the Web-based Supporting Materials at the Statistics in Medicine page in the Wiley Online
Library. Improving this aspect of the BART algorithm is an area of ongoing research for the authors of
this paper, but at present, we are seeing sufficient performance benefits when flexibly modeling just the
response surface that we deem the current algorithm worth introducing. In the meantime, we capitalize
on the property highlighted in the literature on ‘double robustness’ [49, 50], wherein the causal estimate
is correctly identified if either the response surface or the assignment mechanism is correctly specified.
That is, our flexible modeling of the response surface should be sufficient for unbiased estimation even
if our model for the treatment assignment is not perfect.§

5.5. Posterior and Algorithm

The BART SA algorithm is a posterior sampler for the parameters 𝜇xz, 𝜎
2
y , 𝛽z, and the latent variable U.

A single iteration of the BART sampler produces a draw from the posterior distribution of 𝜇xz for each
observation – that is, one draw of f (Xi,Zi) – and one draw of 𝜎2

y . It can also simultaneously produce a
draw of the counterfactual, f (Xi, 1 − Zi), even if no observation was observed at this point, as it models
the entirety of the response surface. Samples of the posterior of the desired treatment effect are thus made
by averaging over draws of f (Xi, 1)− f (Xi, 0) for appropriate subsets of the population. For example, with
ATE, this involves an average over all samples, while for ATT (ATC), only the treatment (control) group
is used. Regardless of the causal estimand, however, the entire sample informs the response surface fit.
After the treatment effect has been estimated, draws from the posteriors of other parameters are used
to update U.

This procedure is repeated until as many desired samples of the treatment effect are obtained. In
practice, a number of the initial samples are discarded as ‘burn-in’. Five hundred to 1000 samples are
typically sufficient for burn-in, and equally as many are adequate for estimating posterior means and
standard deviations.

The full model simulated by our semi-parametric SA is as follows:

Z ∣ X,U, 𝛽z ∼ Bernoulli(Φ(X𝛽z + 𝜁 zU)),

Y ∣ U, 𝜇xz, 𝜎
2
y ∼ N

(
𝜇xz + 𝜁 yU, 𝜎2

y

)
,

𝜇xz, 𝜎
2
y ∣ X,Z ∼ BART(X,Z),

U ∼ Bernoulli(𝜋u),
𝛽z ∼ p(𝛽z),

where p(𝛽z) is a flat, normal, or t distribution and 𝜋u is a hyperparameter.
An efficient method for posterior sampling in a probit regression is given by a latent variable

formulation [51]. In particular, for our setting, we specify

Z ∣ Z∗ = I{Z∗⩾0},

Z∗ ∣ X,U, 𝛽z ∼ N(X𝛽z + 𝜁 zU, 1).

Direct calculation shows that Z has the desired marginal distribution.
For brevity, we detail 𝛽z only under a Student-t prior. A normal prior can be derived from the t by taking

the limit as the degrees of freedom parameter tends to infinity. Similarly, a flat distribution results when
taking the limit as the scale parameter tends to infinity. Samples are obtained for t priors by augmenting
a normal prior with an unknown scale parameter:

§To be clear, we are not claiming that our method is doubly robust. We are merely capitalizing on a property in causal modeling
that was made more explicit in the doubly robust literature regarding the requirement to get the model right for just one of the
pertinent models.
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𝛽z ∣ 𝜎2
𝛽z ∼ N

(
0, 𝜈𝛽z𝜎

2
𝛽zΣ𝛽z

)
,

𝜎2
𝛽z ∼ Inv−𝜒2

𝜈𝛽z
.

Here, 𝜈𝛽z and Σ𝛽z are fixed hyperparameters and the prior obtained when marginalizing out 𝜎2
𝛽z is mul-

tivariate t. For the most part, we use a diagonal matrix with elements consisting of the square of scale
parameters, but Σ𝛽z can be an arbitrary positive definite matrix.

We now describe how samples from the posterior of this model can be drawn. In the sequel, all distri-
butions are conditional on X - to be concise, we omit this dependence. For any specific pair of sensitivity
parameters 𝜁 y and 𝜁 z, the BART semi-parametric SA algorithm proceeds through the following steps:

(1) Run the BART sampler on Y − 𝜁 yU for some number of ‘thinning’ iterations as it updates its
internal state, yielding a single sample of the vector 𝜇xz and the scalar 𝜎2

y ,
(2) Calculate the causal estimate using 𝜇xz and the estimated counterfactuals,
(3) Draw a sample from the conditional posterior density of the assignment mechanism parameters:

p
(
𝛽z, 𝜎2

𝛽z ∣ U, Z∗
)
∝ p(Z∗ ∣ U, 𝛽z)p

(
𝛽z ∣ 𝜎2

𝛽z

)
p
(
𝜎2
𝛽z

)
,

= exp
{
−1

2
‖Z∗ − 𝜁 zU − X𝛽z‖2

}(
𝜎2
𝛽z

)−p∕2
exp

{
− 1

2𝜈𝛽z

1

𝜎2
𝛽z

𝛽z⊤Σ−1
𝛽z 𝛽

}

×
(
𝜎2
𝛽z

)−(𝜈𝛽z∕2+1)
exp

{
−1

2
1

𝜎2
𝛽z

}
.

In the preceding texts, p is the number of columns of X.

(a) Sample 𝜎2
𝛽z ∣ 𝛽z d

=
(

1 + 1
𝜈𝛽z

𝛽z⊤Σ−1
𝛽z 𝛽

z
)/

𝜒2
𝜈𝛽z+p , where 𝜒2

𝜈
is short-hand for a random

variable with that distribution,

(b) Sample 𝛽z ∣ U, 𝜎2
𝛽z ∼ N (A(Z∗ − 𝜁 zU),A) ,A =

(
X⊤X + 1

𝜈𝛽z𝜎2
𝛽z
Σ−1
𝛽z

)−1

.

For a normal prior, one can simply fix 𝜎2
𝛽z to one. For a flat prior, Σ−1

𝛽z is the zero matrix. For
stochastic EM, estimate 𝛽z using numeric optimization.

(4) Draw independently for each observation from Ui ∣ Y ,Z, 𝜇xz, 𝜎
2
y , 𝛽

z ∼
Bernoulli

(
𝜋u=1

i ∕
(
𝜋u=1

i + 𝜋u=0
i

))
, where

𝜋u=1
i = 𝜙

(
Yi − 𝜁 y − 𝜇xz

𝜎y

)
Φ
(
Xi𝛽

z + 𝜁 z
)Zi

[
1 − Φ

(
Xi𝛽

z + 𝜁 z
)]1−Zi 𝜋u,

𝜋u=0
i = 𝜙

(
Yi − 𝜇xz

𝜎y

)
Φ
(
Xi𝛽

z
)Zi

[
1 − Φ

(
Xi𝛽

z
)]1−Zi (1 − 𝜋u).

Here, 𝜙 is the standard normal density, and Φ is the standard normal CDF. In this step, Z∗
i has

been integrated out.
(5) Draw a sample from the conditional posterior density:

p(Z∗ ∣ Z,U, 𝛽z) ∝ exp
{
−1

2
‖Z∗ − 𝜁 zU − X𝛽z‖2

} n∏
i=1

[
I{Z∗

i ⩾0,Zi=1} + I{Z∗
i <0,Zi=0}

]
.

That is, Vi ∣ Z,U, 𝛽z are drawn independently from normal distributions, truncated above or below
0 as Zi = 1 or 0, respectively.

(6) Update the BART sampler with the new Y − 𝜁 yU.

5.6. Simulation across different combinations of 𝜁 y and 𝜁 z

The previous steps describe the simulation procedure for any single pair of values of 𝜁 y and 𝜁 z. More
generally, we are interested in the family of posterior distributions indexed by these two parameters,
approximated by pairs of values spaced on a grid. As it is reasonable to believe that small changes in

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 3453–3470

3461



www.manaraa.com

V. DORIE ET AL.

sensitivity parameters yield similar posterior distributions, the end-state for one grid cell can be used to
seed the sampler in an adjacent cell. Furthermore, the algorithm as described parallelizes nicely as the
grid itself is divided. This yields the global algorithm: (i) For as many units of parallelization as desired
(e.g., ‘cores’ or processors), divide the grid into approximately equally sized and contiguous regions. (ii)
Simultaneously within each region, fit the first grid cell as described earlier. And (iii) for each subsequent
grid cell within each region, use the terminal state of the previous grid cell’s sampler as the starting point
of a new sampler. Proceed with fewer iterations of burn-in.

6. Simulation study

We conducted a large-scale simulation study to assess the ability of our method to handle particular
violations of the structural and parametric assumptions necessary for causal inference. We compare the
linear treatSens algorithm of [19] with our semi-parametric extension. We also compare with an approach
proposed by [14], which uses a similar model to that of [19] (with the exception that a logistic link
function is used instead of a probit in the assignment mechanism) but fits the model using maximum
likelihood. The sensitivity parameters in that strategy serve basically the same function as our 𝜁z and 𝜁y
but have been parameterized as partial correlations.

6.1. Simulation set-up

We divide the range of sensitivity parameters into a grid, with 𝜁 y ranging from 0 to 6 in increments of
0.5 and 𝜁 z ranging from −2.5 to 2.5 in increments of 0.25, yielding a total of 12 × 21 cells. Three data
generating processes are used. The ‘linear/linear’ setting corresponds to linear specifications for both
the treatment assignment mechanism and the response surface. The ‘linear/nonlinear’setting corresponds
to a linear specification for the treatment assignment mechanism and a nonlinear response surface. The
‘nonlinear/nonlinear’setting corresponds to treatment assignment mechanism and a response surface that
are both nonlinear. These models are detailed in Figure 2. We would expect to see better performance
from our method in the third setting and performance similar to other methods in the first two.

Three levels of consideration for unmeasured confounding are adopted: ignoring U, estimating U in
a SA, and treatment effect estimation with access to the true values of U. For all methods, the no-U
fit is obtained by constraining the sensitivity parameters to 0, while in the true-U case, the parameters
remain at zero but U is added as a covariate. The induced independence between response surface and
assignment mechanism results in identical fits for [14] and [19] in these extreme cases. The SA results
(middle panel) assess whether each sensitivity analysis algorithm can recover the true treatment effect if
the correct sensitivity parameters are specified.

To further evaluate the performance of the semi-parametric treatSens algorithm, we assess two different
specifications. For a fully Bayesian version, we use a t prior with three degrees of freedom, mean of 0,
and a scale of 4. This distribution has both computational convenience and reasonable flexibility when
fit with small sample sizes; the scale was chosen to restrict the coefficients to a range consistent with
common effect sizes in probit regressions [52]. As a point of comparison with previous approaches, all of
which utilize optimization in fitting the assignment mechanism, and we also include our S-EM variant.
For the no-U and true-U cases, the independence between treatment and response models means that
it is sufficient to run BART alone. For each of the previous grid cells and data generating models, 500

Figure 2. Data generating processes and nonlinear terms for the three models used in the simulation study. All
four covariates are independent standard normal random variables, and the sample size was fixed at 400.
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datasets are simulated. In each dataset, each method is fit to the data, and the estimate of the treatment
effect is recorded.

6.2. Simulation results

Figure 3 displays the simulation result. Each panel of boxplots corresponds to a combination of simu-
lation settings reflecting the approach to confounding and the assignment mechanism/response surface
combination. Each boxplot corresponds to a specific estimation approach and displays all estimates across
both simulation iterations and sensitivity parameter combinations for that simulation setting.

When U is omitted from any individual analysis (left panel), the unmeasured confounder introduces a
bias in proportion to the magnitude of the sensitivity parameters, 𝜁 y and 𝜁 z, and contributes to the wide
spread of estimates in the left-most column. That any method shows an overall average of 1 when U is
not included is an artifact of the symmetric plot range for 𝜁 z. None of the methods perform particularly
well when U is omitted. However, semi-parametric treatSens does perform better than the linear methods

Figure 3. Box plots for the estimated treatment effects aggregated by simulations and by levels of confounding,
that is, 𝜁 z and 𝜁 y grid cells. The horizontal line at 1 corresponds to the true treatment effect. From top to bottom,
the rows display results from the linear/linear, linear/nonlinear, and nonlinear/nonlinear simulation settings. The
left column corresponds to naïve analyses for each model that ignore U; thus, we only show results for standard
Bayesian Additive Regression Trees. The middle column shows results from each sensitivity analysis approach.
The right column shows results that could be achieved if U were actually observed, and thus, we only have one

Bayesian Additive Regression Trees fit again.

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 3453–3470
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of [19] and [14] in the nonlinear/nonlinear simulation scenario. This is due to BART’s ability to flexibly
model arbitrary nonlinear response surfaces.

When performing a full SA (middle panel), we observe a vast reduction in the variability of estimates
(relative to the setting that ignores U) because of a decrease in omitted-confounder bias. The comparable
performance across methods in linear/linear and linear/nonlinear settings demonstrates that the correct
treatment effect can be obtained when at least one of the treatment or response models is correct. Said
another way, when the response model is nonlinear but the assignment mechanism is linear, the nonlinear
terms in the response surface do not act as confounders and thus can be ignored without introducing bias.

In the setting with nonlinear treatment assignment and response surface, semi-parametric treatSens
performs much better than its competitors. The fully Bayesian implementation of the semi-parametric
treatSens still exhibits slightly greater variability than the other methods; however, the results are centered
around the true treatment effect estimate. The S-EM variant of this algorithm exhibits less variability than
the linear methods except in the linear/linear scenario.

Finally, the minimal change in results when U is directly included in the fit (right panel) demonstrates
that these methods effectively recover the effect of the unmeasured confounder. Note again, however,
that even with U included, the other methods fail in the nonlinear–nonlinear setting because neither
the treatment assignment nor response surface is modeled correctly. Overall Figure 3 suggests that a
semi-parametric approach to sensitivity analysis can be crucially important in the presence of nonlinear
confounding.

Figure 3 aggregates simulation results across levels of the sensitivity parameters. In contrast, Figure 4
disaggregates the results by combinations of sensitivity parameters and displays them in the form of a
heat map. The closer the color is to blue in a given grid square, the larger the treatment effect estimate; the
closer to red, the smaller (greater in negative value) the estimate. Lack of color indicates treatment effect

Figure 4. Heat maps of the bias in the estimated treatment effect for all four sensitivity analysis techniques in the
case where the treatment and response models are nonlinear. Each cell is the average of 500 simulations with the
level of unmeasured confounding given by the x and y axes, expressed in units of the standard deviation of the
response variable. Reported biases are averages across all grid cells. ‘Abs. bias’ is calculated by taking absolute

values first, so that overestimation in one region is not offset by underestimation in another.
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estimates close to zero. Given the increased complexity of these plots, we restrict focus to a comparison
of our four SA methods in the nonlinear–nonlinear setting, as in the others, there was little variation
across combinations of the sensitivity parameters.

This figure reveals that both the linear methods yield positively biased treatment effect estimates for
most combinations of sensitivity parameters. The plot corresponding to the stochastic-EM implemen-
tation of our semi-parametric SA approach, on the other hand, demonstrates little to no bias across
the board.

The fully Bayesian semi-parametric SA is a more interesting case with slight negative bias when both
sensitivity parameters are large and positive. This occurs because in this region, overlap across treat-
ment groups (with respect to U) is compromised and the response surface for the unsupported group is
regressed to its prior mean. The fact that this bias is not present in the S-EM version of our algorithm
suggests that the estimate is (in part) a by-product of uncertainty in the treatment mechanism. Indeed,
for extreme levels of both 𝜁 y and 𝜁 z, the linear methods failed to converge in the linear/linear and the
nonlinear/linear model (this occurred in less than 0.8% of cells, which were simply omitted from analy-
sis). When lack of overlap is sufficiently pronounced, not only will the estimates be biased but also the
treatment model may become separable, with some subset of the covariates perfectly able to predict inclu-
sion in treatment or control. One implication of this is that researchers need to pay close attention to the
overlap across groups and may want to additionally implement methods such as those suggested in [28].

7. Application: Effectiveness of diuretics on high blood pressure using Third
National Health and Nutrition Examination Survey

Now, we investigate how our semi-parametric SA framework works on real-world data. Specifically,
we examine the effectiveness of anti-hypertensive drugs on the level of blood pressure using data from
the NHANES III [11].

7.1. Background

High blood pressure (HBP) is one of the most common and most lethal diseases in the USA. In 2006,
about one third of US adults were affected by HBP [53], and HBP is known to be a primary risk factor
for life-threatening cardiovascular diseases such as heart failure, coronary heart disease, and stroke [54].
Strikingly, HBP accounted for 17.8% of US deaths in 2006, a rate which represents a 19.5% increase
from 1996 [53]. The high prevalence of HBP and high fatality rate of HBP-related diseases make the
development of anti-hypertensives, one of the most lucrative businesses in the drug industry. As of 2010,
the market for anti-hypertensives amounted to about $27bn, and 67 commonly used anti-hypertensive
drugs are available as of this writing [53].

Every anti-hypertensive drug that is sold in the USA must pass the US Federal Drug Administra-
tion’s drug review process. Although the multi-phase trial process of Federal Drug Administration’s drug
approval provides considerable information about the efficacy of the drug under idealized circumstances,
voluntary trial subjects are not necessarily representative of the population of people suffering from
HBP, and so, the effect of treatment in the general population may differ from that observed in a clinical
trial. Moreover, continued monitoring with observational studies yields important information about the
effectiveness of the drug given real-world prescription and adherence patterns.

Risk factors for HBP have been an active area of research in fields as varied as anthropology and soci-
ology. A multitude have been identified, including socioeconomic factors such as age, gender, education,
and income; lifestyle factors such as high sodium intake, low potassium intake, obesity, and modern-
ization; daily stressors like discrimination and racism; insufficient coping mechanisms such as a lack of
kin support, loss of traditional culture, and low education; and finally hereditary factors such as family
history or genetics. The American Heart Association provides a recent overview in [55]. This body of
research informs our choice of confounding covariates.

Many studies have identified nonlinear relationships and interdependencies among risk factors and
HBP [56–59]. For example, income has a nonlinear relationship with blood pressure, and different nonlin-
ear relationships exist for each sex [60]. Simple linear regression with a linear combination of covariates,
ignoring both nonlinear terms and interactions, may fail to control for aspects of the response surface.
Moreover, identification of these features may be difficult in high-dimensional space. Even if we detect
from residual plots that there is a problem, the solution – for instance, adding nonlinear terms or inter-
actions – may be elusive. In our SA framework, mis-estimation of the response surface could lead to
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miscalculation of the probabilities from which the unobserved confounders are drawn and thus biased
estimates of the treatment effect corresponding to any given set of sensitivity parameters. BART has been
shown to be effective in flexibly modeling complicated, nonlinear response surfaces. Consequently, com-
paring SA results arising from assuming a simple linear model to the BART counterpart can demonstrate
the importance of identifying the correct response surface.

7.2. Data and variables

Our data come from the NHANES III, one of the most extensive surveys on Americans’ health and
nutritional status and a source of numerous important findings [61–63]. In NHANES III, socioeconomic
background, medical record, dietary pattern, daily activities, and other health-related issues are recorded
for respondents of age 2 months or older. A 4-hour health exam is also performed in mobile examination
centers. In order to restrict the source of bias to misspecification of the parametric model, we minimize
heterogeneities between treatment groups by excluding healthy individuals. This is accomplished by
defining the control group as those who reported being informed by a doctor that they have HBP but were
not taking any medicine. Because congenital heart problems represent a distinct test case, we further limit
the data to adults at least 17 years old.

Using these data, we highlight two illustrative cases: one in which the treatment effect is estimated
as non-significant with a linear model while it is estimated as significant and negative with BART, and
another which the two have an opposite relationship. Accordingly, we selected two sets of treatment and
dependent variables. We first present the results of the effect of ‘taking two or more anti-hypertensives’
on average diastolic blood pressure. Then, we present the results of the effect of ‘taking beta blocker
and diuretics’ on average systolic blood pressure. Both treatments are defined from reported prescription
drug use, and those drugs primary use classes. Because the American Heart Association suggests that
doctors prescribe an anti-hypertensive with thiazide-type diuretics for those who cannot lower their blood
pressure by modifying their lifestyle [54], the patients in these examples can be thought of as following
a standard regimen.

Based on the findings from previous studies discussed earlier, we include the following pre-treatment
variables as covariates: An indicator variable for whether the respondent is female, an indicator for
whether the respondent is non-Hispanic white, an indicator for whether she or he is black, an indicator for
whether she or he is Hispanic, age (in months), household size, number of years of education completed,
indicators for whether she or he is married, whether s/he is widowed, whether s/he is separated (using
never married as a baseline category), logged annual household income, pack years (number of packs
smoked everyday multiplied by number of years smoked), body mass index((mass (lb)∕height (in)2) ×
703), radial pulse rate (beats/min), sodium intake (mg), potassium intake (mg), sodium–potassium ratio,
alcohol intake (g), an indicator for whether she or he has health insurance, and finally the frequency of
meeting with friends or relatives per year. Observations incomplete with respect to the outcome or the
control variables were excluded from analysis.

7.3. Results

Figure 5 shows the SA for the effect of taking two or more anti-hypertensives on diastolic blood pressure,
while Figure 6 shows the analysis for the effect of taking beta blockers and diuretics on systolic blood
pressure. The results in the left panel are obtained from the SA in which covariate effects are linear and
additive, as detailed by [19]. The right panel shows the results of our semi-parametric SA that accounts
for nonlinear effects and the interaction effects of the covariates on the response surface. For all results
in this section, we use a 10 by 20 grid with 5000 draws of the unmeasured confounder, U, per cell.

The various types of contour lines show the estimated treatment effect for the levels of confounding
under the sensitivity parameters values on the relevant axes. The thin black lines report the basic effect,
while the colored lines highlight specific levels of interest. Specifically, the blue lines labeled with ‘N.S.’
demarcate the point at which the estimated effect is no longer statistically significant at the 5% level.
These bracket a red line, which shows the confounding necessary to drive the estimate to 0. Finally,
the thick gray line corresponds to the treatment effect estimate that would arise with an unmeasured
confounder whose strength is equivalent to that of the covariates whose marginal effect sizes are of the
greatest magnitude. The naïve treatment effect estimate is reported next to the horizontal line at the base
of the y axis, in the lower right of any plot.

Symbols in these figures correspond to the marginal effect sizes of covariates from naïve analyses for
the response model (y axis) and treatment model (x axis). For any parametric fit, including both levels
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Figure 5. Sensitivity analysis results for the effects of taking two or more anti-hypertensives on diastolic blood
pressure using the Third National Health and Nutrition Examination Survey data. The left panel displays the
results of fully parametric sensitivity analysis in which the response surface is fitted with a linear combination of

covariates. The right panel displays the results of the semi-parametric sensitivity analysis.

Figure 6. Sensitivity analysis results for the effects of taking beta blockers and diuretics on systolic blood pressure
using the Third National Health and Nutrition Examination Survey data. The left panel displays the results of the
fully parametric sensitivity analysis in which the response surface is fitted with a linear combination of covariates.

The right panel displays the results of the semi-parametric sensitivity analysis.

of the linear SA and the assignment mechanism in the semi-parametric model, the marginal effects are
simply the coefficients in a regression. For the BART fit of the response surface, marginal effects are
obtained by estimating the average treatment effect when a covariates goes from −0.5 standard devia-
tions below average to 0.5 above. The observed covariates that have a negative association with blood
pressure have been rescaled (multiplied by −1) so that the estimated coefficients will be positive; these
are represented by ▿ on the plot. Finally, the coefficients of all continuous covariates are standardized to
facilitate comparisons with the hypothesized unmeasured confounder.

The results of the linear SA in the left panel of Figure 5 indicate that, absent unmeasured confound-
ing, the treatment effect estimate would be about −0.08, that is, close to zero. Moreover, the sensitivity
parameters for an unobserved binary confounder only need to be stronger than the coefficient of age (the
strongest observed confounder plotted in the upper right) to reduce the treatment effect to zero. On the
other hand, the results of the semi-parametric SA in the right panel show the statistically significant and
negative treatment effect of −0.17 if the ignorability assumption holds. Although these naïve treatment
effect estimates are somewhat different, both results are fairly sensitive to the effect of an unobserved
confounder. For instance, a confounder with a coefficient in the treatment model of −1 and coefficient
of 0.5 for the outcome model would change the signs of the negative treatment effect estimates in the
both panels.

Figure 6 shows the results of the SA for the effect of taking beta blockers and diuretics on systolic BP.
While the linear SA and the semi-parametric SA produce similar naïve treatment effect estimates (−0.16
and −0.15, respectively), the results of the latter are more sensitive to unobserved confounding than the
former. For instance, a confounder with a coefficient in the treatment model of −0.5 and coefficient of
0.25 for the outcome model would not change the statistical significance of the results using the linear
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SA, while using a semi-parametric SA, the naïve treatment effect of −0.15 is already not statistically
significant.

These two figures stress that our inference on the sensitivity of the treatment effects to unmeasured
confounding can substantively change, depending on how the response surface is predicted. Forcing the
use of a linear response surface can induce undue confidence in the results, as in Figure 6 or increase the
sensitivity of estimated treatment effects that are captured more robustly when the response surface is
allowed to be nonlinear, as in Figure 5. The direction and magnitude of the bias introduced by misspec-
ification of the response surface will determine whether the semi-parametric approach will increase or
decrease apparent sensitivity to unmeasured confounding.

8. Conclusion

More often than not, it is impractical to implement randomized experiments to address many of the
most interesting causal questions. The alternative approach of using observational studies to draw causal
conclusions requires structural as well as functional assumptions. These structural assumptions are typ-
ically not trivially plausible, which motivates analysis of the sensitivity of causal estimates drawn from
observational studies to violations of these assumptions, in particular of ignorability. In order for such
strategies to yield results that are useful to applied researchers, these SAs should be easily interpretable,
preferably employing sensitivity parameters whose magnitudes are calibrated based on contextual infor-
mation (for instance, analogous parameter estimates for observed covariates). However, these goals can
be more difficult to achieve if one is forced to rely on parametric models, as the potential for model mis-
specification introduces its own biases. We sidestep this issue by allowing for a nonparametric fit of the
relationship between the outcome and the observed covariates via the BART algorithm. This approach
appears to be competitive with existing approaches when no nonlinear confounding exists and to out-
perform these approaches in the presence of nonlinear confounding. Moreover, the procedure has been
integrated into the treatSens package for the R programming language available, on the Comprehensive
R Archive Network.
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